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Abstract— Recently, the emerging concept of “unmanned
retail” has drawn more and more attention, and the
unmanned retail based on the intelligent unmanned vending
machines (UVMs) scene has great market demand. However,
existing product recognition methods for intelligent UVMs cannot
adapt to large-scale categories and have insufficient accuracy.
In this article, we propose a method for large-scale categories
product recognition based on intelligent UVMs. It can be divided
into two parts: 1) first, we explore the similarities and differences
between products through manifold learning, and then we build
a hierarchical multigranularity label to constrain the learning
of representation; and 2) second, we propose a hierarchical
label object detection network, which mainly includes coarse-
to-fine refine module (C2FRM) and multiple granularity hier-
archical loss (MGHL), which are used to assist in capturing
multigranularity features. The highlights of our method are
mine potential similarity between large-scale category products
and optimization through hierarchical multigranularity labels.
Besides, we collected a large-scale product recognition dataset
GOODS-85 based on the actual UVMs scenario. Experimental
results and analysis demonstrate the effectiveness of the proposed
product recognition methods.

Index Terms— Large-scale product recognition, multiple gran-
ularity, object detection.

I. INTRODUCTION

W ITH the rapid development of computer vision and
digital image processing based on deep learning in

recent years. Technologies about product recognition related
to intelligent unmanned vending machines (UVMs) are rapidly
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Fig. 1. Brief overview of our method. Before training, manifold learning is
used to build hierarchical multigranularity labels. During training, the hierar-
chical label detection network is used to learn the location and classification
of products.

emerging. The intelligent UVMs based on computer vision
have been successfully commercialized in some places and
brought more and more convenience to users. However, for
traditional UVMs, the process usually relies on mechanical
tools and a lot of sensors, and it has the disadvantage of
purchasing one item at a time, and the products that can
be sold are fixed. Different from traditional UVMs, the core
technology of unmanned retail based on intelligent UVMs
scene is to recognize the products in the image collected
by the camera [1], [2], and have the following advantages:
1) it combined with deep learning have the superiority of
interaction and selectivity for the customer; 2) in addition,
it can monitor the number of products in real-time, and
efficiently customize the supplement plan, saving a lot of costs;
and 3) it can boost the potential commercial applications by
data of customer purchase behavior [3]–[5]. Therefore, proper
object detection and recognition method is the key to realizing
intelligent UVMs settlement. In this work, we focus on the
large-scale categories of product recognition based on the
intelligent UVMs scenario by combining detection network
and manifold learning as shown in Fig. 1.

There are many studies on intelligent UVMs. For the
existing product recognition methods, they mostly focus on
smart unstaffed retail shop [6]–[8], or consider the customer’s
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purchasing process [1], [9]. Their tasks were used to recognize
products that contain only ten distinct categories, which made
it impossible to achieve good results in large-scale category
recognition, especially in the case of dense placement. For
existing product datasets, they either focus on the side of
the products [10]–[12] or the categories are few and sparsely
distributed [1]. Especially in the scenario of intelligent UVMs,
Zhang et al. [1] constructed a dataset for multiclass beverage
detection. The datasets comprise ten categories of beverages
in the Chinese market, with an average of 4.56 instances
per image. Although the number of images has more than
30k, the product categories are very few and sparsely placed.
For practical applications, this is not appropriate, because
businesses always want to place more products and support
more abundant products. Our dataset can achieve nearly a
hundred kinds of large-scale product recognition and cover a
total of 85 categories of products. They include mineral water,
beverages, chewing gum, and milk. The products are densely
laid out, with an average of 22.97 instances per image, this
is in line with the actual needs. Therefore, the existing works
based on intelligent UVMs have the following problems.

1) The existing works support limited product categories.
This narrows the range of products that customers can
choose.

2) The existing methods do not consider the similarity
and differences between multigranularity features of
products. Generally, it is difficult to learn different fine-
grained features for similar products. Therefore, the
high similarity between different classes leads to poor
performance (such as beverages of the same brand with
different flavors).

The main challenge of this work is that the high intraclass
variance due to the angle and position, and the low interclass
variance due to the appearance, especially for the high vari-
ety of products. Therefore, considering these multigranularity
features of product, some factors should be noticed.

1) It is difficult to learn the fine-grained differences
between product categories, especially for the products
from the same class or the same brand. For example,
as shown in Fig. 2, all bottled water has the same top
contour structure, and most of their bottle caps are white
in color. Master kong jasmine honey tea and jasmine tea
have the same bottle cap and similar drink colors.

2) The potential coarse-grained correlation should be con-
sidered. For products that are very similar in appearance,
often have the same coarse-grained characteristics and
tiny fine-grained differences, both of which coexist. For
example, the top contour structure of mineral water is
round, but the colors of different categories have unique
fine-grained features. There are both commonness and
differences among them, so a proper approach to estab-
lish the constraint relationship is crucial.

In general, focusing on the shortcomings of existing meth-
ods and challenges, we have made efforts in the following
aspects.

1) Inspired by t-distributed stochastic neighbor embed-
ding (t-SNE) [13] in manifold learning, we exploit

Fig. 2. Illustration of the similar products, in which the left figure of each
row indicates the position and category of products, and the right side is the
enlarged images.

the multigranularity characteristics of products and pro-
pose a scheme that explores similarities and differences
between products and build a hierarchical multigranu-
larity label. The main reason for using t-SNE is that it
can learn the distribution of data in the low-dimensional
manifold space through nonlinear dimensionality reduc-
tion and retain the essential characteristics of data.
It can be used to mine feature similarity among product
data and generate hierarchical multigranularity labels to
optimize the network’s learning of product features.

2) For making full use of the multigranularity features,
we propose a hierarchical label detection network.

On the whole, the highlight of our method is that it considers
the potential similarity between large-scale category products
and optimizes the learning through hierarchical multigranular-
ity labels. In addition, a hierarchical label detection network
is proposed, the potential multigranularity representation con-
straint information is added to refine the features.

In more detail, our method can be divided into two parts.
1) A scheme is used to generate hierarchical multigranu-

larity labels. It first explores the high-level differences
of products and maps them to the low-dimensional
space through manifold learning. Then combine some
products with similar feature distribution and generate
coarse-grained labels. Finally, combine with the original
annotations of the products themselves, we generate the
hierarchical multigranularity label for each item. It con-
tains multigranularity representations and constraints of
the product, and it will be used as annotation information
to guide the training.

2) A hierarchical label object detection network is used
to introduce the multigranularity annotation information
of products in the training stage and mainly includes
C2FRM and MGHL.

The C2FRM is designed to output multigrained categories,
and optimize the multigrained learning from coarse to fine
during training. The MGHL is designed to constrain the
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hierarchical interrelationship between multigrained labels.
Besides, to prove the effectiveness of our method, we con-
ducted experiments on the GOODS-85 dataset, which we
collected based on the actual UVMs scenario.

Our main contributions are as follows.
1) We explore the high-level differences and the potential

similarity between the products, build a hierarchical
multigranularity label inspired by manifold learning.
Optimize the learning of multigranularity features of
products.

2) We propose a hierarchical label detection network,
which mainly includes coarse-to-fine refine module
(C2FRM) and multiple granularity hierarchical loss
(MGHL). They, respectively, optimize the network’s
learning of multigrained features of products and
consider the hierarchical constraints interrelationship
between multigranularity labels.

3) Extensive experiments demonstrate the effectiveness of
the proposed method on the GOODS-85, which we col-
lected based on the actual UVMs scenario and includes a
total of 85 products. Experimental results show that our
model obtains better performance than existing methods.

The rest of the article is organized as follows. Related work
is reviewed in Section II. The proposed method is elaborated
in Section III. The dataset collected based on the actual UVMs
scenario is elaborated in Section IV. Experimental evaluation,
analysis, and the discussion of the related parameters are
presented in Section V. Finally, we conclude this work in
Section VI.

II. RELATED WORK

In this article, we first consider the characteristics of product
images in intelligent UVMs and get the multigranularity repre-
sentation of products inspired by manifold learning. Addition-
ally, we propose a product detection network, which optimized
the network for the learning of products’ multigranularity
features. Thus, in this section, we mainly introduce the related
work on product recognition based on intelligent UVMs and
object detection. Additionally then, we give a brief overview of
multigranularity representation and manifold learning method
and their application in various fields.

A. Product Recognition Based on Intelligent UVMs

The core technology of unmanned retail based on intelli-
gent UVMs scene is to recognize the products in the image
collected by the camera. Aiming at the intelligent UVMs in
the unmanned retail industry, many works have made many
contributions, which mainly include two parts: 1) the product
datasets and 2) the existing product recognition method.

For existing products datasets, Goldman et al. [10] assem-
bled a dataset and benchmark containing images of super-
market shelves. It contains a total of 1 10 712 categories
of products, with an average of 147.2 instances per image.
Wei et al. [11] proposed a new dataset, which includes
200 categories of products for the automatic checkout task.
Unlike our work, it has the features of the products in multiple
perspectives, not only the top contour structure information.

Zhang et al. [1] considered the real-world scenarios of UVMs,
and constructed a large-scale dataset for multiclass beverage
detection. The datasets comprise ten categories of beverages
in the market of China, with an average of 4.56 instances per
image. Different from our work, we collect a dataset covering a
total of 85 categories of products. They include mineral water,
beverages, chewing gum, and milk. The products are densely
laid out, with an average of 22.97 instances per image.

Many works have made many contributions to product
recognition. Aiming at exploring the feasibility of implement-
ing the unstaffed retail shopping style, Liu et al. [6] proposed
a smart unstaffed retail shop scheme. Li et al. [7] proposed a
new data priming method to solve the domain adaptation prob-
lem in products’ automatic checkout. Besides, Zhang et al. [1]
divided the related tasks of customers in the purchase process
into static detection and dynamic classification. Kim et al. [9]
proposed a system to recognize purchasing behavior by detect-
ing and tracking products in real-time using only camera sen-
sors. Li et al. [14] proposed a backbone network of DrtNet,
which adopts deformable convolution and group normalization
layers for detecting beverages. Liu et al. [15] proposed a
binocular camera system to solve the problems of distortion
and coverage caused by the monocular camera in product
recognition. Unlike the existing method, our work focuses
on proposing a method for large-scale categories of prod-
uct recognition based on Intelligent UVMs, and effectively
improves the recognition performance. Use only information
from one camera for static product detection once during the
purchase process.

B. Object Detection

The key technology of product recognition based on intel-
ligent UVMs scene is object detection. Recently, a series of
object detection methods emerge in an endless stream and are
widely used in the industrial field. Among them, the one-stage
object detection methods based on anchor mechanism, such as
SSD [16], DSSD [17], YOLO [18]–[20], RetinaNet [21], etc.,
not only has good detection accuracy, but also greatly improves
the speed of object detection. In addition, the two-stage object
detection methods based on anchor mechanism, such as Faster
R-CNN [22], FPN [23], etc., have always occupied the highest
results of general object detection. Then with the advent of
CornerNet [24], object detection entered the era based on
anchor-free, and more advanced detection methods CenterNet
[25], ExtremeNet [26], FCOS [27] achieved better results.
These object detection methods have their advantages, which
gradually promote the development of computer vision.

More importantly, it is also very important in the indus-
trial field. Hu et al. [28] provided a survey, which exploits
deep learning for cancer detection and diagnosis. Said and
Barr [29] applied deep learning to pedestrian detection. Based
on the real-world surveillance video, Mabrouk and Zagrouba
[30] conducted abnormal behavior recognition through the
intelligent video surveillance system. Zhang et al. [1] and
Kim et al. [9] applied object detection method in the computer
vision to UVMs. However, they did not fully consider the
large-scale categories of products in the container. Combined
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with the multigranularity features of products, we propose
a better hierarchical label detection network for large-scale
categories products.

C. Manifold Learning

In order to generate multigranularity representations of
products, manifold learning is used to explore similarities and
differences between products using high-level features.

Manifold learning assumes that the data of interest actually
lie on an embedded nonlinear manifold within the higher-
dimensional space. Its main application is to learn the distrib-
ution of data in the low-dimensional manifold space through
nonlinear dimensionality reduction and to retain the essential
characteristics of data. It has been applied in various fields.
Yang et al. [31] proposed a semi-supervised algorithm called
ranking with local regression and global alignment (LRGA)
to learn the manifold space for data ranking. Hou et al. [32]
first attempted to explore the manifold in the label space in
multilabel learning. Zhao et al. [33] applied manifold learning
to transfer learning and reduced the distribution difference
between the source domain and target domain. He et al. [34]
proposed a PolSAR image classification method combining
nonlinear manifold learning with a fully convolutional net-
work. It is clear that manifold learning can well reflect the
essential characteristics of high-dimensional feature data and
has high applicability.

Among the manifold learning methods, t-SNE [13] is a
highly feasible and scientific way of nonlinear dimension
reduction and visualization. Pezzotti et al. [35] presented a
novel approach to the minimization of the t-SNE objective
function that has linear computational complexity. Priam [36]
believed that t-SNE and its variants lead to competitive nonlin-
ear embeddings which were able to reveal the natural classes.
Li and Yan [37] proposed a method for 3-D shapes isometric
deformation using t-SNE based on inner distance (In-tSNE).
In this work, we use t-SNE to mine feature similarity among
product data and generate hierarchical multigranularity labels
to optimize the network’s learning of product features.

D. Multigranularity Representation

Multigranularity representation is a kind of method com-
bining multigranularity features to study and analyze data.
In this work, in order to obtain better features, we explore
the multigranularity representation through manifold learning.

The multigranularity features can effectively improve the
learning degree of the network, which can be applied to other
fields. Wehrmann et al. [38] proposed architecture for hierar-
chical multilabel classification and discovered local hierarchi-
cal class relationships and global information. Yu et al. [39]
propose the spatial pyramid structure to enhance the vector
of locally aggregated descriptors (VLADs) for place recogni-
tion. Wang et al. [40] and Li et al. [41] proposed the feature
learning strategy integrating discriminative information with
various granularities. Yang et al. [42] introduced multiple
granularity analysis frameworks for video segmentation in a
coarse-to-fine manner. Lue et al. [43] proposed a strategy inte-
grating global and local information in different granularities

and spatial constraints for clothes retrieval. Wang et al. [44]
constructed multigranularity descriptors by mining the subor-
dinate level labels for fine-grand classification. Yu et al. [45]
devise a hierarchical deep word embedding (HDWE) model
which is a coarse-to-fine predictor to address click feature
prediction for fine-grand classification.

These existing methods fail to consider the potential con-
straints between granularity features of different levels. Most
importantly, its approach is not well extended to detection
tasks. In our work, we first mined the multigranularity features
of the data and then used it to optimize the training of our
proposed hierarchical label detection network.

III. METHOD

A. Overview

Our method consists of two major parts: hierarchical multi-
granularity labels and a hierarchical label detection network.

1) In the part of hierarchical multigranularity labels,
we propose a scheme for generating hierarchical multi-
granularity labels. It first explores the high-level differ-
ences of products and maps them to the low-dimensional
space through manifold learning, and then combines
some products with similar distribution and generates
coarse-grained labels. After being combined with the
original annotations of the products themselves, each
product contains coarse-grained and fine-grained cate-
gories labels, and these two labels have a subordinate
relationship. Then we combine these two kinds of labels
according to their affiliation, and finally, generate a
hierarchical multigranularity label for each item. It is
not only the representation of products in multiple gran-
ularities but also has the corresponding relation between
different granularities. It will be used as annotation
information to guide the training.

2) Hierarchical label detection network introduces the
multigranularity annotation information of products in
the training stage, which mainly includes C2FRM and
MGHL. As shown in Fig. 3. The C2FRM outputs coarse-
grained and fine-grained categories, and at the same time
optimize the network’s learning of multigrained features
of products from coarse to fine. The MGHL is designed
to consider the hierarchical constraints interrelationship
between coarse-grained and fine-grained labels, and fur-
ther optimize the learning of hierarchical multigranular-
ity features. Eventually, the total loss function used in
training is described in detail.

B. Hierarchical Multigranularity Labels

In the real UVMs scene, products have potential similarities,
so it is necessary to consider their hierarchical multigranularity
representation. In this section, we propose a scheme that is
used to generate hierarchical multigranularity labels. It mainly
consists of three parts: high-dimensional feature extraction,
feature reduction, and feature clustering: 1) high-dimensional
feature extraction firstly cuts out the product area in the image
and then extracts the features of the image containing only
a single product through CNN; 2) inspired by t-SNE [13]
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in manifold learning, feature reduction reduces the high-
dimensional features extracted in the previous step to 2-D
space and visualizes them; and 3) hierarchical label division
is used to cluster 2-D features after dimension reduction, and
the result of dividing is the coarse-grained category label cor-
responding to the products. Finally, combining coarse-grained
and fine-grained labels, we get hierarchical multigranularity
labels as the final annotations. The detailed methods are as
follows.

1) High-Dimensional Feature Extraction: To effectively
extract the features of each product, we crop images through
the bounding box from annotations and get an image gallery
containing only one product per image. Then we randomly
select 50 images of each product from the image gallery as
the collection of images of this product. So we end up with a
set of images of all the products.

In our work, ResNet [46] pre-trained on ImageNet is used
as the feature extraction network, and each image can be
represented as a higher-dimensional vector. It is a mapping
from image to geometric space and can be represent as F (·).
In detail, Imgk

n represents the nth image in the set of product
category k, where the value of n ∈ {1, 2, . . . , 49, 50}, and
the value of k ∈ {1, 2, . . . , K − 1, K }, where K is the total
quantity of product category. The output feature xi represents
nth image feature in the set of product category k, it can be
represented as follows:

xi = F (Imgk
n) (1)

where xi ∈ Rd , and the d is the dimension of the feature,
i ∈ {1, 2, . . . , 50, 51, . . . , 50× K } is equal to 50× (k −1)+n.
It is worth noting that the dimension of this feature is high, and
it is difficult to mine the potential similarity between products
by high dimensional features.

2) Feature Reduction: Feature reduction is used to better
mine and represent the potential feature similarity between
high-dimensional features, inspired by t-SNE [13] in manifold
learning. It first constructs the distribution of the data in high
and low dimensional spaces, respectively, and then aims to
fit the two distributions to the maximum extent possible. It is
a highly feasible and scientific way of nonlinear dimension
reduction and visualization.

In the high-dimensional space, the higher dimensional fea-
ture xi that we got in the previous step forms a feature set
that can be represented as X = {x1, x2, . . . , x50×K }. For
two elements xi and x j in X, we use pi j to represent the
distribution probability between them. The purpose of this
design is to satisfy the symmetry between the difference, and
pi j can be represented as follows:

pi j = p j |i + pi| j

2
(2)

where the conditional probability p j |i to represent the proba-
bility that when xi is centered, x j is chosen as its neighbor.
pi| j is exactly opposite with p j |i . The difference of product
features can be modeled as Gaussian distribution. Mathemati-
cally, take p j |i for example, it can be represented as follows:

p j |i = exp(−�xi − x j�2/2σ 2
i )∑

m �=i exp(−�xi − xm�2/2σ 2
i )

(3)

where σ i is the variance of the Gaussian when xi is
centered.

In the low-dimensional space, we assume that the fea-
ture set after dimension reduction is represented as Y =
{ y1, y2, . . . , y50×K }, and qi j represents the distribution prob-
ability of yi and y j . Considering the crowding problem [13]
of data during the dimensional transformation, the difference
between the feature is modeled as a t-distribution with one
degree of freedom, and q i j can be represented as follows:

qi j = (1 + �yi − y j�2)−1

∑
m �=l(1 + �ym − yl�2)−1

(4)

where the yi ∈ R2, y j ∈ R2, ym ∈ R2 and yl ∈ R2 are the
elements of Y.

Our aim is to simulate the data distribution of high dimen-
sional space in low dimensional space and explore the differ-
ence between different products. Therefore, Kullback-Leibler
Divergence can effectively fit the two distributions, and the
specific cost function Cost can be represented as follows:

Cost( p�q) =
∑

i

∑
j

pi j log
pi j

qi j
(5)

by minimizing the Cost( p�q), the optimal feature set Y is
the feature set after dimension reduction. The visualization of
data distribution after feature reduction is shown in Fig. 4(a),
in which the distribution of 85 products in total.

3) Hierarchical Label Division: To divide the hierarchy
labels reasonably, we visualized the distribution of the product
after feature reduction, as shown in Fig. 4(a). Among them,
different categories are represented by different numbers.
Some products are usually distributed adjacent and have a
potential correlation. Therefore, based on our experience,
we select 10, 8, 6, 4, 2 coarse-grained categories, respectively,
and use k-means clustering to divide the products. The results
with hierarchical label division is shown in Fig. 4(b)–(f).
Among them, different colors indicate that products are
divided into different categories. After partitioning, based
on feature differences, we generate multigranularity labels
with hierarchical relationships. It includes the multigranularity
labels and the constraints between different hierarchies.

C. Hierarchical Label Detection Network

In this section, we propose a hierarchical label detection
network for product recognition, and at the same time, use
hierarchical multigranularity labels obtained from the above
section. As shown in Fig. 3. The base network is VGG16.
RPN and ROI Align are the same as Faster R-CNN [22] and
Mask R-CNN [47].

During inference, the hierarchical label detection network
extracts features through the base network, and the RPN is
used for regional proposal, and then the C2FRM is input
through the ROI Align. C2FRM will output probability with
different granularity, and we associate them as the final product
score. During training, in addition to the MGHL, regression
loss and classification loss were also used. MGHL is used
to constrain the multigranularity score output of C2FRM,
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Fig. 3. Overview of our hierarchical label detection network, which mainly includes C2FRM and MGHL. In the process of training and reasoning, C2FRM
is used to output the multigranularity labels of each instance. MGHL only serves to guide learning during training.

specifically, the matrix product is used to establish the affil-
iation matrix and calculate its cross-entropy. In this way, the
constraint relationship between the multigranularity features is
further considered.

1) Coarse-to-Fine Refine Module: The C2FRM is used
to output the category labels with different granularity. Its
structure consists of fully connected layers, and its dense
connection mode makes it have an excellent nonlinear fitting
ability. We output the hierarchical multigranularity labels of
the products in an asymptotic manner, with the purpose of
making C2FRM guide the learning of features in a coarse-
to-fine way, which is equivalent to adding additional product
information.

As shown in Fig. 3, the whole C2FRM is composed of
four fully connected layers. Among them, two layers are
used to output coarse-grained classification and three layers
are used to output fine-grained classification, and they share
the parameters of the first layer. Hierarchical multigranularity
labels are used to constrain the multigranularity score output
of C2FRM. During training, this part includes three parts of
the loss function, the classification cross-entropy of coarse
granularity and fine granularity, respectively, and the MGHL.
The training process is the process of refinement of better
features.

2) Multiple Granularity Hierarchical Loss: We explore the
potential relationship between different granularity categories
and propose multigranularity hierarchical loss. It first calcu-
lates the affiliation matrix of category scores under differ-
ent granularity by matrix product, and then calculates the
cross-entropy of the affiliation matrix as the final result.

We discuss the impact of the different losses in our method
in Section V-C5.

In detail, for a given image, let p f ∈ RK f ×1 represents
the fine-grained categories score of the output, g f ∈ RK f ×1

represents the ground truth of fine-grained categories label.
And pc ∈ RKc×1 represents the coarse-grained categories
score of the output, gc ∈ RKc×1 represents the ground
truth of coarse-grained categories label. Among them, K f

and Kc are the number of fine-grained and coarse-grained
categories, respectively. The MGHL can be represented by
MGHL( pc, p f ) as follows:

MGHL( pc, p f ) = −
∑

(gc · gT
f ) log( pc · pT

f ) (6)

where the gc · gT
f ∈ RKc×K f , f c · f T

f ∈ RKc×K f are the ground

truth of affiliation matrix and the output scores affiliation
matrix, respectively. The affiliation matrix is a 2-D matrix
with length Kc and width K f . The MGHL is obtained by
cross-entropy calculation on a 2-D affiliation matrix, which is
equivalent to increasing the length of the label compared to
the cross-entropy calculation based on 1-D labels.

The affiliation matrix represents the dependency relationship
between the coarse-grained and fine-grained category, with a
value of 1 if and only if the product belongs to both right
coarse-grained and fine-grained classes, and 0 in the remaining
cases. This shows that MGHL( pc, p f ) can effectively sup-
press the wrong dependency relationship of product categories
under different granularity, and fully consider the potential
affiliation between category labels under different granularity.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on September 01,2022 at 05:23:55 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: PRODUCT RECOGNITION FOR UNMANNED VENDING MACHINES 7

Fig. 4. Visualization of the distribution of instances categories in low dimensional space. (a) Shows the results of original product data in a low dimensional
space, different categories are represented by different numbers. (b)–(f) Show the results with hierarchical label division when the coarse-grained category is
10, 8, 6, 4, 2. Among them, different colors indicate that products are divided into different categories.

3) Overall Loss function: We introduce in detail the overall
loss function of our proposed hierarchical label detection
network during training. The overall loss function consists
of two parts: 1) one is the same loss on PRN as Faster
R-CNN [22] and 2) the other part contains a total of four
items. Specifically, in addition to the MGHL mentioned above,
it also includes the bounding box regression loss, and the
classification loss includes fine-grained and coarse-grained,
respectively.

In detail, for a given image, the overall loss function can
be represented by Lall as follows:

Lall = LRPN
reg + LRPN

cls + MGHL + L reg + L f
cls + Lc

cls (7)

where the LRPN
reg and LRPN

cls are the regression and classification
loss of the foreground on RPN as described in [22], the MGHL
is described in detail above. The bounding box regression
adopted smooth L1 loss function can be represented by L reg

as follows:

L reg =
N∑

i∈Positive

∑
m∈{cx,cy,w,h}

smoothL1
(
lm
i − ĝ m

i

)
(8)

where N is the number of matched positive boxes, the l and ĝ
are the predicted box and the ground truth box, respectively,
as the same as described in [22]. The box center (cx, cy),
width w, and height h are the offsets used for regression.
Besides, the L f

cls and Lc
cls in (7) are the classification cross-

entropy of fine-grained and coarse-grained, respectively. They
can be unified and represented by Lcls as follows:

Lcls = −
C∑

j=1

g j log p j (9)

where C is the number of categories, g j is the ground truth
of category and p j is the output scores. The training process
is the process of refinement of better features.

IV. DATASET

In this section, to demonstrate the superiority of our method,
we construct a dataset that includes large-scale categories of
products. We briefly introduce the generation of our GOODS-
85 dataset. It can be divided into three parts: the process
of image collection on the actual container scenario, image
correction to avoid overlapping bounding boxes, and the
procedure of data annotation.

A. Image Collection

Our data acquisition platform is based on the container
of a four-tier, with a 3 00 000-pixel high-definition fisheye
camera mounted on the top and center of each floor of
the container. The inner diameter of each floor is about
600 and 500 mm in length and width, and 350 mm in height.
Similar to an actual unmanned intelligent container, the high-
definition fisheye camera collects information directly above
the products. Compare with ordinary high-definition cameras,
high-definition fisheye cameras have a very wide field of view,
which allows the container to carry more items in limited
space, and can cover all products information in the container
to a large extent.

We collect different images by changing the type and
quantity of products in the container. An image is collected
for each shift of the products placed. In the end, there were
a total of 1047 pictures, each of a size of 640*480, covering
a total of 85 items. They include mineral water, beverages,
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Fig. 5. Illustration of the spherical isometric projection correction model.

chewing gum, and milk. They are the most common products
in the Chinese market.

B. Image Correction

The images collected by the high-definition fisheye camera
have a very wide field of view, which can cover all the items
in the container completely. However, it can be seen from
the fisheye image that the products are staggered, and the
visible area of the products at the boundary of the container
is small, especially in the case of dense items. So when the
bounding boxes are overlapped seriously, it will result in poor
performance if only the original fisheye image is used.

In order to avoid this problem, inspired by [48], we adopt
the idea of mathematical modeling to correct the distortion
of the fisheye image. It can stretch the fisheye image from
the center position to the surrounding position by spherical
isometric projection correction model, so as to avoid the
serious overlapping of bounding boxes caused by the dense
spatial position, and improve the detection performance.

The spherical isometric projection correction is a nonlinear
projection correction model, which describes the correspon-
dence between the points on the spherical surface and the
plane image. In this section, our aim is to map each point in
the original image to the corrected plane. The model can be
represented as Fig. 5, where Oo and Po are the points on the
original plane before correction, Oc and Pc are the points on
the plane after correction, and Pm is the point on the sphere. R,
ϕ, and θ are the distance and angle parameters of the sphere.

We set the original image in the x Oo y plane, the coordinate
of Po in the original image can be represented as (xo, yo).
Then, the point Po is mapped to point Pc after correction,
and the coordinate of Pc in the corrected image can be
represented as (xc, yc). The principle of spherical isometric
mapping correction model can be explained as follows: for any
point Pm on the surface of sphere, its deviation angle in the
vertical direction can be represented as ϕ, and the relationship
between ϕ and the radial distance Oo Po in the image plane
can be represented as follows:

ϕ = Oo Po

R
× 90◦ (10)

where R is the radius of the view of the container in the
original image.

Fig. 6. Illustration of the sample images collected by us: (a) and (b) are
examples of before and after the correction, respectively.

Then, the radial distance Oc Pc in the corrected image plane
can be represented as follows:

Oc Pc = R × tan ϕ (11)

then the horizontal and vertical coordinates xc and yc of point
Pc in the corrected image can be calculated by the following
equation, respectively:

xc = Oc Pc × cos θ (12)

yc = Oc Pc × sin θ (13)

where θ is the deflection angle of point Po in the x Oo y plane.
It can be represented as follows:

θ = tanh
yo

xo
. (14)

Since the corrected image size tends to infinity theoretically,
we only ensure that the products appear intact in the corrected
area. After the above correction algorithm, point Po in the
original image is mapped to point Pc in the corrected image.
Effectively avoids the problem of the small visual area of items
placed on the boundary of the container and serious overlap
of the bounding box, especially in the case of dense items.
Some sample images are shown in Fig. 6.

C. Image Annotation Procedure

In the end, there are a total of 1047 pictures, each of a size
of 640*480, covering a total of 85 items. They include mineral
water, beverages, chewing gum, and milk. For each category
of product in the image, we manually labeled the category
to which it belongs. For properly placed items, we have
labeled the top of the item area, and the bounding box can
cover the top contour of the items well. For some items at
the boundary of an image or obscured by others, we try to
cover the area visible to the items as much as possible. More
importantly, such placement rules are not allowed in the actual
situation. Moreover, a total of 24 051 instances were labeled
with category labels and bounding boxes.

The distribution of images and instances in the dataset is
shown in Table I. There are about 100 to 1000 instances of
each category. In addition, the number of products in each
image is very dense, which can contain 57 products at most.
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TABLE I

SAMPLE DISTRIBUTION OF IMAGES AND INSTANCES IN DATASET (IMAGES
INDICATE THE NUMBER OF IMAGES, AND OBJECT DENOTES

THE NUMBER OF INSTANCES)

V. EXPERIMENTS

In this section, we first briefly introduce our experimen-
tal settings. And then, in the results and analysis section,
we compare other methods and ablation experiments. Finally,
we discuss the relative parameters in our method.

A. Experimental Settings

1) Compared Methods: A brief introduction of the com-
pared approaches is as follows.

1) Faster R-CNN [22]: Two-stage object detection network,
which introduces a region proposal network (RPN) that
shares convolutional features and enables nearly cost-
free region proposals.

2) SSD [16]: One-stage object detection network, which
combines predictions from multiple feature maps with
different resolutions to naturally handle objects of vari-
ous sizes.

3) YOLOv3 [20]: One-stage object detection network, com-
bined with multiscale predictions and a better backbone
classifier, is extremely fast and accurate.

4) RetinaNet [21]: One-stage object detection network,
adopt the feature pyramid network (FPN) from [23] as
the backbone network and efficiently constructs a rich,
multiscale feature pyramid from a single resolution input
image.

5) CornerNet [24]: Approach to object detection based on
anchor-free, which detects an object bounding box as a
pair of key points, the top-left corner, and the bottom-
right corner, using a single convolution neural network.

6) CenterNet [25]: Approach to object detection based
on anchor-free, which explores the central part of a
proposal, use a triplet, instead of a pair, of key points
to represent each object.

7) FCOS [27]: Approach to object detection based on
anchor-free, which detects an object bounding box by
predicting the deviation of a pixel to the center of its
corresponding bounding box.

8) Ours: Our method for hierarchical label detection is
based on the actual UVMs scene. Based on the visual
characteristics of products, we use manifold learning
to generate hierarchical multigranularity labels, propose
C2FRM and MGHL to optimize the learning of product
features during training.

2) Performance Evaluation: For performance evaluation,
a widely used metric mean average precision (mAP) was
calculated for products in our experiment. It can be calculated

TABLE II

QUANTITATIVE RESULTS IN TERMS OF MAP IN COMPARISON OF STATE-
OF-THE-ART OBJECT DETECTION MODELS ON GOODS-85 DATASET

by the following formula:

mAP = 1

m

m∑
i=1

APi (15)

where m represents the number of categories of products. The
idea of average precision (AP) can be conceptually regarded
as calculating the area under the precision and recall curve of
each product. The calculation formula of AP can be expressed
as follows:

AP = 1

11

∑
r∈{0,0.1,...,1}

pinterp(r) (16)

where pinterp(r) = max̃r :̃r≥r p(̃r) represent the maximum
precision when recall equals to r . Among them, the precision
and recall rate can be expressed as follows:

p = TP

TP + FP
(17)

r = TP

TP + FN
(18)

where TP, FP, and FN are the true positive, false positive, and
false negative sample quantity of products, respectively.

3) Implementation Details: The proposed method is imple-
mented by PyTorch. The base network adopts the pre-model
of VGG16 in ImageNet. Each batch consists of one image on
each GPU. We set the coarse-grained categories label to 6.
We use the SGD optimization algorithm to train the network,
and set the weight decay to be 0.0001 and momentum is set
to be 0.9. For the detection head, the initial learning rate is
0.001 for the first 30 epoch, which decays by a factor of
10 for the next 20 and 10 epoch, and training stops after
60 epochs. All the experiments are conducted on a workstation
with 8 GTX-1080Ti GPUs.

B. Results and Analysis

1) Objective Comparison: To prove the effectiveness of our
method, we conducted experiments on the GOODS-85 dataset
and SmartUVM [1] dataset. In Table II, we compare the classic
object detection methods of one-stage, two-stage, and anchor-
free in recent years. Compared with the classic two-stage,
and one-stage methods for general object detection, such as
Faster R-CNN [22], SSD [16], etc., the two-stage method has
a better effect due to its strong adaptability to small-scale
items. At the same time, the high similarity between categories
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TABLE III

QUANTITATIVE RESULTS IN TERMS OF MAP IN COMPARISON OF
STATE-OF-THE-ART OBJECT DETECTION MODELS

ON SMARTUVM [1] DATASET

and the anchor design also limits the effect of the one-stage
methods. The method based on anchor free can also achieve
good performance, such as CornerNet [24] reaching 92.1% of
the mAP. However, when an image contains many of the same
products, and they are placed densely, it will bring a certain
difficulty to the selection of the center point and the matching
of corner points. Based on the characteristics of the products,
our method considers the similarity between products and
achieves the best performance on the GOODS-85. Compared
with the anchor Free method, our method improves by 1.6%.
Compared with the one-stage and two-stage methods, our
method improves by 1.8%–2.5%.

In Table III, we also compare typical detection methods.
However, SmartUVM [1] dataset is different from ours, which
only contains ten beverages with obvious differences, and its
features are easier to learn. Also, since the dataset has fewer
categories, the number of coarse-grained category labels in our
method is set to 4. We can see that on SmartUVM [1], com-
pared with Faster R-CNN [22], the one-stage based methods
have better performance. In addition, The methods based on
anchor free are still excellent. It can be found that although
the advantages of our method cannot be fully exploited on this
dataset, it can still bring about an improvement of about 0.5%.

2) Ablation Experiments: To prove the effectiveness of each
part of the C2FRM and MGHL. In order to ensure that the
experiment is not affected by other factors, we use the VGG16
as the backbone in these experiments. The experimental results
are shown in Table IV. The first row indicates that the results
of the experiment where the above mentioned are not used,
and the product classification part uses only original category
labels. The second row indicates that using the C2FRM as
the output head of the product classification, and adding the
hierarchical multigranularity labels of products can make the
mAP improved by 1.0%. In addition, from the last row of
the table, the addition of MGHL can increase the mAP by
about 0.8% on this basis. Using two parts of C2FRM and
MGHL at the same time can get better performance in product
recognition.

Experiment results demonstrate that adding C2FRM can
effectively improve the mAP of product recognition. Since
forcibly learning the fine-grained difference between similar
products will affect the stability of the network, and the
C2FRM can use the hierarchical multigranularity labels, and
its constraints improve the network stability. The MGHL is

TABLE IV

RESULTS OF ABLATION EXPERIMENTS USING C2FRM AND MGHL OF
OUR METHOD ON GOODS-85 DATASET

Fig. 7. Visualization of the hierarchical multigranularity outputs of products,
which includes five products from top to bottom. The hierarchical multigran-
ularity outputs of each product are composed of three parts. The left side is
the output score of coarse-grained, the top side is the output score of fine-
grained, and the rest is the affiliation matrix, which is obtained through the
matrix product of the two kinds of output score.

calculated based on the affiliation matrix, and it is used to
constrain the affiliation between different granularities. The
classification requirements are met only when the products are
classified correctly under different granularities. In particular,
comprehensive considerations of C2FRM and MGHL can
bring a degree of improvement in this task.

C. Discussion

In this section, we completely discuss the works and con-
tributions involved in our proposed methods. We split the
discussion into six parts.

1) The effect of hierarchical multigranularity labels.
2) The heatmap visualization.
3) Discussion about our architecture of other backbones,

mentioned in Section III-C. To illustrate the validity of
our entire network structure, we have chosen another
backbone as the base network to compare results.

4) Discussion of the impact of the hierarchical label divi-
sion in our method, mentioned in Section III-B3.

5) Discuss the loss function of the affiliation matrix in the
MGHL, mentioned in Section III-C2.

6) The effect of high-dimensional feature extraction net-
work, mentioned in Section III-B1.

1) Effect of Hierarchical Multigranularity Labels: The first
part of the discussion is a visual analysis of the effect of
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Fig. 8. Comparison of the feature map visualization: (a) is the original
images, (b) is the result of not adding the C2FRM and MGHL, and (c) is the
result of using the C2FRM and MGHL we proposed.

hierarchical multigranularity labels. We have visualized the
hierarchical multigranularity outputs, then artificially listed
some cases of products, and analyzed the reasons why the
hierarchical multigranularity labels are effective.

As shown in Fig. 7, we list the hierarchical multigranu-
larity outputs of five different products in different images.
The hierarchical multigranularity outputs of each product are
composed of three parts. The left side is the output score of
coarse-grained, the top side is the output score of fine-grained,
and the rest is the affiliation matrix. Among the visualization
region, the category score is higher, and the responses to the
region are stronger. Similar products can be suppressed by the
affiliation matrix, thus making the output more accurate. This
is embodied that through hierarchical multigranularity outputs,
the response of the correct category region is always high,
while the response intensity of incorrect categories becomes
weaker. Besides, It is worth noting that for similar products
belonging to the same coarse-grained category, the stability of
the model will be affected if the network forces them to learn,
and the multiple constraints of hierarchical multigrained labels
can effectively mitigate this effect.

2) Visualization: Different from the general object detec-
tion, the products are densely laid out and there is high
intra-class variance and low inter-class variance. Therefore,
accurate response to the location and features of the product
is critical. Inspired by [49], whose validity has been proven.
We calculated and visualized the heatmap of the feature map
output by feature extraction, and the guidance of C2FRM and
MGHL made the response of the product area stronger.

As shown in Fig. 8, we artificially selected some images
including different product categories and different distrib-
utions for feature visualization. For each image, (b) is the
heatmap without our C2FRM and MGHL, and (c) is the
heatmap with our C2FRM and MGHL. Compared to not
adding C2FRM and MGHL, the network pays more attention
to the region getting more features of products. Besides, it can

TABLE V

PERFORMANCE COMPARISON FOR DIFFERENT BACKBONE ON
GOODS-85 DATASET. C2FRM AND MGHL ARE ABBREVIATIONS

FOR C2FRM AND MGHL, RESPECTIVELY

directly indicate the importance of the activation at spatial
position effectively. The visualization results show that the
areas of network attention are focused on products. It indicates
that the C2FRM can play a role in making the network pay
attention to products. Among the top region of products,
feature extraction networks can extract features effectively,
and there are almost no differences due to different product
categories.

3) Discussion About Other Backbones: To illustrate the
validity of our network structure and the universality of
this method. In this section, we used different networks
as the backbone for comparison. The experimental results
compare our architecture with four different backbones, such
as VGG19, ResNet50, ResNet101, and ResNet152. As shown
in Table V, for each base network, the first column is the
result using the convolutional neural network, which is used
as the baseline. Our method result is represented as the last
two columns in each backbone, and the C2FRM and MGHL
as described in Section IV-C. Besides, in order to prove the
validity of its structure, we did not add data augmentation in
this experiment.

As the result shown in Table V, our method using VGG19 as
the backbone has a better performance than other backbones.
According to our analysis, the reason for the poor performance
of using ResNet as a backbone is that ResNet is good at
extracting deep semantic information of the object, and the
products need more shallow features due to the small object
size, dense placement, and high similarity between classes.
At the same time, our structure can greatly improve the
results of the original basic network. In addition, in order to
prove this point of view, we added the additional FPN [23]
structure. It can be seen that the FPN was used to integrate
the shallow features, which brought a great improvement in
ResNet. Compared with VGG19, VGG19-FPN has deeper
network layers, thus increasing the difficulty of learning. It is
worth noting that our method can be improved no matter what
backbone is used. For our proposed C2FRM with the backbone
of VGG19, the performance of mAP object detection results
was increased by 0.9%, which proves the effectiveness of our
proposed module can effectively refine the multigranularity
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TABLE VI

PERFORMANCE COMPARISON OF USING DIFFERENT LOSS FUNCTIONS

f p
Affm(·) OF AFFILIATION MATRIX IN MGHL ON GOODS-85 DATASET

features of the products, it is effective in product detection and
recognition. Consider the affiliation between multigranularity
level labels. The model training by MGHL can add stronger
constraint relationships to a certain extent and achieve better
performance, and the performance of mAP is increased by
1.2% on the method.

4) Discussion About Hierarchical Label Division: As
described above, the feature distribution of different products
has some potential correlation. The distribution of the prod-
uct after feature reduction is shown in Fig. 4(a). Therefore,
we divide the coarse-grained categories of products accord-
ing to their original fine-grained features. Most importantly,
there are mutual constraints between coarse-grained and fine-
grained labels, which will help the network learn the multi-
grained features of the products.

The number of categories after the hierarchical label divi-
sion is crucial, which determines whether the added coarse-
grained constraint labels are appropriate. If the number of
divisions is too small, it will introduce inappropriate over-
constraint information. On the contrary, if the number of
divisions is too large, it will not have sufficient effects. The
appropriate hierarchical label division is obtained by the trade-
off performance.

Fig. 9 shows the relationship between division selection
and performance of product detection results. It is shown that
regardless of whether MGHL is used, the division value of
6 can maximize the accuracy of products detection, and with
the increase of it, the constraint information of multigranularity
labels is getting weaker and weaker, and it is difficult to bring
obvious improvement. Through the trade-off, we chose the
division value as 6.

5) Discussion About Multiple Granularity Hierarchical
Loss: As described in Section III-C2 (6), the MGHL first
calculates the affiliation matrix of category scores under dif-
ferent granularity by matrix product and then calculates the
cross-entropy of the affiliation matrix as the final result. In the
MGHL, the choice of loss function of the affiliation matrix is
an important and difficult issue. The final loss function can be
represented by MGHL as follows:

MGHL( pc, p f ) = f p
Affm

(
pc · pT

f

)
(19)

where f p
Affm(·) represent the loss function of affiliation matrix.

We compare several typical loss functions in the field of
medical image segmentation to deal with sample imbalance
such as Dice loss [50], Tversky loss [51] and the traditional
classification methods CE Loss and Focal loss [21]. The

Fig. 9. Comparison of mAP of products detection using MGHL.

TABLE VII

PERFORMANCE COMPARISON OF USING DIFFERENT MODEL

PRE-TRAINED ON IMAGENET IN HIGH-DIMENSIONAL
FEATURE EXTRACTION

performance is shown in Table VI. A proper loss function
of the affiliation matrix is the main factor of product classi-
fication. The excessive and insufficient loss function of the
affiliation matrix can lead to poor performance. Compared
with the loss function used in the field of medical image
processing, it is not suitable for this task because it mainly
deals with the imbalance of labels and lacks the constraint
ability for outputs. Focal loss increases the learning weights
of positive and negative samples based on CE loss and it
can force the network to learn the differences of samples.
Therefore, the focal loss is not robust enough for outlier
samples. The model training by cross-entropy can add stronger
constraint relationships to a certain extent and achieve better
performance, and the performance of mAP is increased by
0.5%–1.0% on the method.

6) Effect of High-Dimensional Feature Extraction Network:
As described in Section III-B1, we use the model pre-trained
on ImageNet to extract the high-dimensional features of the
products, and each image can be represented as a higher-
dimensional vector. What needs to be emphasized is that
we consider the general consensus in various fields, and use
ResNet50 as a tool to extract features, but it is not limited to
ResNet50. To prove it, we compared networks with high level
semantic feature extraction capabilities, such as ResNet [46],
DenseNet [52] and ResNeXt [53]. As shown in Table VII,
the experiment in this part retains the same experimental
settings as above. It can be seen from the results that the
use of different feature extraction networks to extract high-
dimensional features has strong robustness and little impact
on the final performance. This conclusion is also obvious,
because it is only a preliminary feature extraction, and after
the manifold learning, it will not even affect the division of
the coarse-grained label of the item.
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VI. CONCLUSION

In this article, firstly, we propose a scheme to mine the
similarities and differences of products and generate more fea-
sible information for guidance training. Secondly, we propose
a hierarchical label detection network and optimize the net-
work’s learning of multigrained features of products. Finally,
we collect a GOODS-85 dataset based on the actual UVMs
scenario. Experimental results demonstrate that our method
outperforms other state-of-the-art methods in two benchmarks.
On GOODS-85, the use of our method get better performance
of product recognition and improved the mAP to 93.7%.
Compared with other typical detection methods, our methods
were all improved the mAP by more than 1.6%. In the future,
we will focus on: 1) improving the scalability of the algorithm,
to satisfy the demands of products categories dynamically
changing with time in practice; and 2) extending the algorithm
to other similar tasks by more explorations.
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